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Abstract

The P300 Speller is a brain-computer interface system that allows victims of motor
neuron diseases to regain the ability to communicate by typing characters into a
computer by thought. Since the system has a relatively slow typing speed, different
stimulus presentation paradigms have been proposed designed to allow users to input
information faster by reducing the number of required stimuli or increase signal fidelity.
This study compares the typing speeds of the Row-Column, Checkerboard, and
Combinatorial Paradigms to examine how their performance compares in online and
offline settings. When the different flashing patterns were tested in conjunction with
other established optimization techniques such as language models and dynamic
stopping, they did not make a significant impact on P300 speller performance. This
result could indicate that further performance improvements on the system lie beyond
optimizing flashing patterns.

Introduction 1

Victims of amyotrophic lateral sclerosis (ALS), brain-stem stroke, and other upper 2

motor neuron diseases lack the ability to vocalize their thoughts and emotion. With a 3

sustained loss of speech, their capacity to write, speak, and laugh is irreversibly 4

impacted. However, the advent of augmentative and alternative communication devices 5

(AAC), such as brain-computer interfaces (BCI), have provided a possible avenue to 6

restore their ability to communicate with the external world. 7

The P300 speller, an electroencephalogram (EEG)-based BCI, translates neural 8

signals recorded from the scalp into speech in the form of virtual commands on a 9

computer screen [1]. This system utilizes the P300 signal, an endogenous event-related 10

potential (ERP) with a characteristic positive potential after a 300 millisecond delay 11

from stimulus presentation [2]. First introduced by Farwell and Donchin, this system 12

has users attend to a 6x6 matrix composed of alphanumeric characters. The user 13

attends to a character on the matrix while the rows and columns of the matrix flash 14

randomly. Because the target character flashes relatively infrequently in a stream of 15
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non-target, repeated stimuli, attending to the target character on the matrix elicits the 16

P300 signal, according the “oddball” paradigm. The P300 signal, observed in the EEG, 17

is then used in classification to detect which character on the matrix was selected. 18

Though the P300 signal is robust, these systems generally have a relatively slow typing 19

speed. Therefore many studies have focused on system optimization, attempting to 20

improve overall system speed. 21

System optimization studies have traditionally focused on enhancing specific 22

components of the P300 speller apparatus. For instance, Allison et al. modified the 23

matrix size, demonstrating that increasing the size of matrix improves the amplitude of 24

the P300 signal [3]. Lu et al. evaluated the inter-stimulus-interval (ISI), suggesting a 25

longer ISI translates to a both a higher online accuracy and higher characters per 26

minute (CPM) rate [4]. Both Townsend et al. and Jin et al. developed novel flashing 27

patterns, demonstrating significant improvements in bit rate and practical bit rate 28

compared to the traditional row column paradigm (RCP) [5], [6]. Recently, work has 29

shown that a viable strategy of enhancing system performance is to simultaneously 30

combine distinct optimization techniques into a singular method. For instance, Speier et 31

al. tested the performance of a ‘famous faces’ stimulus paradigm integrated with a 32

previously published particle filtering algorithm into a singular approach, establishing 33

that the concatenation of two distinct methodologies into one offers superior results 34

versus both approaches alone [7], [8]. 35

This study surveys the differences in system performance between three proposed 36

flashing patterns: Row-Column Paradigm (RCP), Checkerboard Paradigm (CBP), and 37

the Combinatorial Paradigm (COMB) along with the integration of a language model 38

using a particle filtering algorithm [8]. We hypothesize that the improvements offered 39

by different flashing patterns are negligible in comparison to those from the 40

incorporation of a language model, and therefore that improvements to BCI 41

performance lie outside of flashing pattern optimization. 42

Checkerboard Paradigm 43

The checkerboard paradigm, CBP, was introduced as a way of improving upon the 44

errors associated with the RCP, while concurrently improving overall BCI performance 45

[5]. The goal with the CPB was therefore to design a novel flashing pattern that 46

addressed the constraints associated with the RCP: the adjacency effect and the double 47

flash pattern [9], [10]. The adjacency effect describes situations where flashes of an 48

adjacent row or column (i.e., non-target characters) draws the user’s attention, leading 49

to false-positive P300 signals and ultimately erroneous detections of the intended 50

character [9]. Further, the double flash pattern highlights an inadvertent conundrum 51

associated with the RCP: random sequential row (column) or column (row) flashes can 52

decrease the temporal resolution of the P300 signal [10]. First, because a requisite of the 53

oddball paradigm is the presentation of “deviant stimuli” (i.e., random stimuli), 54

consecutive flashes can impair the detection of the second flash. That is, only the first 55

flash of the target row (column) flash will elicit the P300 signal; the second will not. 56

Kanwisher reported this observation as the repetition blindness phenomenon [11]. In a 57

standard rapid serial presentation (RSVP) task, consecutive stimuli presented with a 58

temporal resolution of less than 500 milliseconds abate the recognition of the succeeding 59

stimuli. In the P300 speller, the flash duration for a single target selection and the ISI 60

are both 62.5 milliseconds, meaning the second flash occurs 125 milliseconds from the 61

onset of the preceding flash, thereby diminishing the ability of the user to resolve the 62

detection of the second flash. Hence, the aim of the CBP sought to mitigate these issues 63

by addressing them in the stimulus design. 64

The CBP superimposes an imaginary checkerboard over the matrix in such a way 65

that each adjacent character belongs to a different class [5]. Because a checkerboard 66
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Fig 1. Checkerboard paradigm (CBP) in a 6x6 matrix. Left: Matrix with
imaginary checkerboard superimposed over it; adjacent characters are assigned to
different classes. Center: Characters arranged in a virtual matrix, each matrix
represents a different class. In this example, the first column has been selected from the
top matrix. Right: Actual display seen by user; a face is flashed on top of the selected
characters from the virtual matrices.

inherently has an alternating pattern of two colors, the adjacent characters are grouped 67

into two distinct classes. The characters of these two classes then randomly populate 68

one of two corresponding virtual matrices, which the user never observes. These virtual 69

matrices determine the stimulus pattern for each trial (i.e., each target selection). 70

During each target selection, the rows within both virtual matrices are flashed followed 71

by the columns of both virtual matrices. As the rows and columns of the virtual 72

matrices are flashed, the corresponding characters on the real matrix are presented to 73

the user. This methodology reduces the adjacency effect, ensuring that adjacent 74

characters never experience simultaneous flashes, and further safeguards against 75

sequential flashes (i.e., double flashes). However, it requires a larger number of flashes 76

in order to distinguish between each of the characters in the grid. 77

78

Combinatorial Paradigm 79

The Combinatorial Paradigm (COMB) proposed by Jin et al. utilizes mathematical 80

combinations to minimize the number of flashes per trial with the intention of 81

optimizing the practical bit rate of the system [6]. Reducing the number of flashes per 82

trial would hypothetically improve the selection rate (i.e., due to a reduced number of 83

flashes for classification), leading to an improved PBR (practical bit rate), while still 84

maintaining the vitality of the P300 amplitude. The goal of the COMB paradigm was 85

therefore to optimize the number of target flashes to improve the efficacy of the system. 86
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Fig 2. Combinatorial paradigm (COMB) with (C9
2) flashing pattern. Left:

Each character is assigned a unique, two number identifier corresponding to the time it
will be flashed. For example (1,3) indicates that the character will be flashed in the first
and third flash. For simplicity, the characters in this figure are assigned indices
sequentially, in practice the assignment would be random. In this case, we depict the
third flash; so all characters corresponding to the number 3 are flashed. Right: The
output seen by a user; a face is flashed over characters that are assigned flash index 3.

To choose an optimal number of flashes per trial, Jin et al. used the binomial coefficient 87

of the xk term of (1 + x)n, where n equals the total number of flashes per trial, and k 88

equals the number of flashes on the target character. Essentially, this translates to: 89

Since a traditional 6x6 matrix holds up to thirty-six characters, Jin et al. proposed 90

using 7-flash and 9-flash patterns, which locate thirty-five and thirty-six characters, 91

respectively. The 7-flash pattern is based on the combination (C7
3 ), meaning that each 92

trial has seven flashes and the target character flashes three times. Here, a single trial 93

refers to one set of stimuli for a single target selection. Therefore, selecting the 94

character “A” for a single trial should elicit three P300 responses in a set of seven 95

flashes. Since the combination (C7
3 ) equals thirty-five, the 7-flash pattern locates 96

thirty-five characters in a traditional 6x6 matrix. On the other hand, the 9-flash pattern 97

is based on the combination (C9
2 ), which results in each trial having nine flashes and the 98

target character flashing two times. This combination equals thirty-six, meaning that 99

the corresponding flashing pattern locates thirty-six characters on the traditional 6x6 100

matrix. The 9-flash pattern locates the same amount of characters as the RCP flash 101

pattern, while the 7-flash pattern locates one less. Likewise, a 12-flash pattern, which 102

mirrors the RCP flash pattern, is modeled as “12 choose 2”, where there are a total of 103

twelve flashes for two target selections per trial – (C12
2 ). In comparison to the 7- and 104

9-flash patterns, the 12-flash pattern creates a 71.43% and 33.33% increase in the total 105

number of flashes per trial, respectively. 106

Methods 107

Subjects 108

Ten healthy subjects (6 male, 4 female) aged 20 to 35 years old participated in this 109

study. All subjects were cognitively viable with no noticeable neurological deficits. All 110

subjects formally consented to participate. This study was approved by the 111

Institutional Review Board (IRB) at UCLA. 112
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Data Collection 113

EEG data were collected from a 32-cap electrode (g.GAMMAcap2, Guger Technologies), 114

and signals were amplified with two 16 channel g.tec biosignal amplifiers (Guger 115

Technologies). Signals were sampled at 256 Hz, referenced to the left ear, grounded to 116

AFz, and filtered using a bandpass filter from 0.1 to 60 Hz. BCI2000, a BCI-based 117

development framework, was used for stimulus presentation and data collection [12]. 118

Users were presented with a 6x6 matrix consisting of alphanumeric characters with 119

‘famous faces’ flashes [13]. Three distinct flashing patterns, RC, CBP, and COMB, were 120

presented to the user to assess divergence in performance (Table 2). Each flash lasted 121

for 62.5 ms with a 62.5 ms ISI, yielding a 125 ms stimulus onset asynchrony (SOA). 122

Subjects completed three training sessions for each flashing pattern—creating a total of 123

nine sessions per subject. For each flashing paradigm, users copied three, ten character 124

words, including spaces. Training data from each session was used for classification in 125

its corresponding flashing pattern. If classification reached a significant benchmark from 126

calibration data, online testing was performed for the trained flashing pattern. In this 127

case, classification was appreciable for all subjects, so all subjects performed three 128

online testing sessions. The order of online testing for each flashing pattern was 129

randomized to dilute the effects of non-familiarity. Classification was performed using a 130

previously established particle filtering (PF) algorithm [8]. 131

Language Model 132

In this study, we use a probabilistic automata model as described by Speier et al. [8]. 133

The model employs a directed graph that has states for each substring that starts a 134

word in the corpus, beginning with a blank root node. (Figure 2). Each node has 135

directed edges to nodes that add a single character to the string. For example, if the 136

model only contained the word “CAR,” it would have four states: the root node 137

representing a blank string, “C,” “CA,” and “CAR.” When the word “CAKE” is added 138

to the model, it shares the root node and the “C” and “CA” states, and adds two 139

additional states: “CAK” and “CAKE.” The state “CA” then links to both the states 140

“CAR” and “CAK.” If a state represents a completed word, it will have a link back to 141

the root node to begin a new word. The state “CAR,” for instance, links to the root 142

because “CAR” is a complete word, but it also is the beginning of other words so it has 143

additional links to other states such as “CARD” or “CART.” The relative frequencies of 144

substrings in the Brown English language corpus determined transition probabilities 145

between nodes [28]. For instance, the probability of typing the letter “R” after “CA” 146

has already been entered is determined by dividing the number of occurrences of words 147

that begin with “CAR” by the number of times words start with “CA” in the corpus. 148

Similarly, the probability that a word ends and the state transitions back to the root is 149

the ratio of the number of times that word occurs in the corpus over the number of 150

word occurrences starting with that substring. 151

Classifier 152

Since it is impractical to compute the probability distribution over all possible strings 153

typed by the user in real time, the probability distribution is estimated using the PF 154

classifier. This classifier estimates the probability distribution over possible outputs by 155

sampling a batch of possible realizations of the model (i.e., a batch of output strings that 156

could have been typed by the user). Each of these realizations is called a particle, which 157

contains a pointer to a node in the model and represents one possible configuration of 158

the model at a given time. Each of these particles moves through the language model 159

independently, based on the model’s transition probabilities. Low probability 160
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realizations are periodically replaced by more likely realizations by resampling the 161

particles based on weights derived from the observed EEG responses. The algorithm 162

estimates the probability distribution of the possible output strings by finding the 163

proportion of the particles that point to each state after they have moved through the 164

model. In order to determine the probability that the user is attempting to type a given 165

character xt based on the observed signals, stepwise linear discriminant analysis 166

(SWLDA) is used to select a set of signal features to include in a discriminant function 167

[29]. During training, the algorithm uses ordinary least-squares regression to predict 168

class labels and iteratively adds the most significant features and removes the least 169

significant features until either the target number of features was met or it reached a 170

state where no features were added or removed [10]. The score for flash in for character 171

t, yit, can then be computed as the dot product of the feature weight vector with the 172

features from that trial’s signal. It has been shown that scores can be approximated as 173

independent samples from a Gaussian distribution given the target character [19]. 174

f(yit|xt) =


1√
2πσ2

a

exp( −1
2σ2

a
(yit − µa)

2) if xt ∈ Ai
t

1√
2πσ2

n

exp( −1
2σ2

n
(yit − µn)

2) if xt /∈ Ai
t

(1)

where µa, σ
2
a, µn, and σ2

n are the means and variances of the distributions for the 175

attended and non-attended flashes, respectively, and Ai
t is the set of characters 176

highlighted in flash i. The conditional probability of a target at time t given the EEG 177

signal and the previous target characters x0:t−1 can then be found: 178

p(xt|yt, x0:t−1) ∝ p(yt|xt)p(xt|x0:t−1) ∝ p(xt|x0:t−1)Πif(y
i
t|xt) (2)

where p(xn|x0:n−1)) is the prior probability of character xn given the previously 179

selected characters, determined from the language model. Because the previous target 180

characters are unknown, it is necessary to compute the probability over all possible 181

output strings. This computation is impractical, so the distribution needs to be 182

estimated using sampling methods such as particle filtering. In particle filtering, a set 183

number of samples (i.e., particles) are created to estimate the distribution over the 184

language model. Each particle j consists of a link to a state in the language model, x
(j)
t ; 185

a string consisting of the particle’s state history, x
(j)
0:t , the index of the last time the 186

particle was in the root node, m; and a weight, w(j). When the system begins, a set of 187

P particles is generated and each is associated with the root node with an empty history 188

and a weight equal to 1
P . At the start of a new character, a sample character x

(j)
t is 189

drawn for each particle from the proposal distribution defined by the language model’s 190

transition probabilities from the particle’s history, x
(j)
0:t−1. 191

x
(j)

t ∼ p(xt|x(j)
0:t−1) (3)

where p(xt|x(j)
0:t−1) is provided by the language model as in eqn 1. When a particle 192

transitions between states, its pointer changes from the previous state in the model, 193

x(t−1), to the new state xt. The history for each particle, x
(j)
0:t , is stored to represent the 194

output character sequence associated with that particle. After each stimulus response, 195

the score for that response, yit, is computed and the probability weight is updated for 196

each of the particles: 197

w
(j)
t ∝ p(yt|x(j)

t ) ∝ Πif(y
i
t|xt) (4)

wheref(yit|x
(j)
n ) is computed as in Eqn 2. The weights are then normalized and the 198

probability of an output string is found by summing the weights of all particles that 199

correspond to that string. 200
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p(x0:t|y1:t) =
∑
k

w
(k)
t δ

x
(k)
0:t

x0:t (5)

where δ is the Kronecker delta. Dynamic classification was implemented by setting a 201

threshold probability, pthresh, to determine when a decision should be made. The 202

program flashes characters until either the maximum probability exceeds the threshold, 203

or the number of sets of flashes reached the maximum (10 flashes). The classifier then 204

selects the string that satisfied argmax
x0:t

p(x0:t|y1:t). If characters in this output differ 205

from the previous output text, the previous characters are assumed to be errors and are 206

replaced by those in the current string. A new batch of particles, x∗
t , are then sampled 207

from the current particles, xt, based on the weight distribution, wt. Each of the new 208

particles are then assigned an equal weight w
∗(j)
t = 1

P . The subject then moves on to 209

the next character and the process then repeats with the new batch of particles. The 210

optimization of pthresh is impractical for online experiments, so a previously reported 211

value of 0.95 was used for all trials [16]. 212

Predictive Spelling 213

When predictive spelling is added to the model, the same classifier and language model 214

are used, but the projection step is modified in order to estimate the probabilities of 215

potential completed words. When particles are being projected, a proportion, ρ, of them 216

continue moving throughout the model until they reach the root node. Note that 217

because particles can move multiple steps in one transition, the length of the particle 218

history can now be greater than t, so it is denoted n. Each particle can have different 219

values of n and m; the subscript j is omitted for these values here for simplicity. After 220

projection, the probability distribution over words is found by summing the weights of 221

particles that have been projected forward to completed words 222

The top k of these words are then added to designated locations in the character 223

grid (Figure 1). EEG responses associated with flashing those cells are applied to the 224

particles that have been projected to those words. Particles that were projected to lower 225

probability words are given zero probability and will be replaced during the next 226

resample phase. In this study, the probability of a complete word selection was set 227

empirically to 0.40 and six word suggestions were presented to the user. 228

Evaluation 229

Evaluation of a BCI system must take into account two factors: the ability of the 230

system to achieve the desired result and the amount of time required to reach that 231

result. Because there is a trade-off between speed and accuracy, evaluation in BCI 232

communication literature is traditionally based on the mutual information between the 233

selected character, x, and the target character, z, referred to as the bit rate (BR). 234

BR =
∑
z

p(z)
∑
x

p(x|z)log p(x|z))
p(x)

(6)

In the most common metric, information transfer rate (ITR), the probabilities for all 235

characters are assumed to be the same p(x) = 1
N (where N is 36, the size of the 236

alphabet) and errors are assumed to be uniform across all possible characters, so 237

p(x|z) =

{
ACCc x = z
1−ACCc

N−1 x ̸= z
(7)
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where ACCc =
∑

t δ
zt
xt

n is the single character accuracy and n is the total number of 238

characters selected. This reduces the bit rate to 239

BR = logN +ACCc logACCc + (1−ACCc) log
1−ACCc

N − 1
(8)

This is then multiplied by the average number of characters selected per minute 240

(CPM=n/time) to produce the ITR [26]. 241

ITR = BR ∗ CPM (11)

One problem introduced by including PS is that sentences including erroneous word 242

completions could be a different length from the target. Comparing at the character 243

level no longer works in this case. One solution is to base accuracy on Levenshtein 244

distance (LD) (i.e., the minimum number of insertions, deletions, and replacements 245

required to convert x into z) [30]. We then have ACCc =
n–LD(x,z)

n and the equations 246

above hold. It has previously been pointed out that ITR overestimates the amount of 247

information conveyed by the system because characters do not occur with equal 248

frequency [31]. Also, the amount of information that ITR assigns to a word is based 249

largely on the word’s length. This metric assigns a significantly higher amount of 250

information to incorrect strings that are share characters to the target, regardless of 251

whether they make syntactic sense or possibly confuse the meaning (Table 1). An 252

alternative would be to base the metric on word frequency (p(z′) = c(z′)
c(∗) ). The accuracy 253

can then be computed as the fraction of correct words (ACCW =

∑
t δ

z′t
x′
t

n′ ), resulting in a 254

conditional probability of a selection: 255

p(x′|z′) =
{
ACCW y = z′$1−ACCW ) p(x′)

1−p(z′) y ̸= z′ (12)

The bit rate then becomes 256

BR′ =
∑
z

′(z′)(ACCW log
ACCW

p(z′)
+ (1−ACCW ) log

1−ACCW

1− p(z′)
) (13)

The mutual information can then be found by multiplying by the words selected per 257

minute (WPM = n′

time ). 258

MI = BR′ ∗WPM (14)

Because the distributions for speeds, accuracies, and bit rates are not normally 259

distributed, significance was tested for all metrics using the nonparametric 260

Kruskal-Wallis test. 261

Results 262

Offline Analysis 263

In the offline analysis, no one paradigm significantly outperformed any other across the 264

three measured metrics. Table 1 shows the offline selection rate (in characters per min), 265

accuracy, and ITR for each flashing pattern. The differences in median SR between the 266

three flashing paradigms were not found to be statistically significant (H = 2.96, p = 267

0.227). The accuracy across the different paradigms, while high, are also not 268

significantly different (H = 0.581, 0.748). While the combinatorial paradigm has a 269

slightly better accuracy, there are no significant differences in ITR between the three 270

paradigms (H = 5.257, p = 0.0722). 271
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Table 1. The offline selection rate (SR), accuracy (ACC), and information
transfer rate (ITR), for each flashing pattern.

SR (Characters/minute) ACC (%) ITR (bits/minute)
Subjects RCP CBP COMB RCP CBP COMB RCP CBP COMB
1 13.46 13.87 13.91 100.00 95 100.00 69.61 64.19 71.93
2 13.32 12.94 15.07 95 100.00 100.00 61.61 66.89 77.91
3 14.769 13.75 15.71 100.00 100.00 95 76.35 71.10 72.70
4 11.12 9.80 13.79 100.00 100.00 100.00 57.51 50.64 71.31
5 12.938 13.52 12.97 95 95 100.00 59.86 62.56 67.07
6 14.90 14.44 14.55 95 100.00 100.00 68.97 74.63 75.20
7 14.747 14.24 13.87 100.00 100.00 100.00 76.24 73.63 71.72
8 13.278 12.70 13.93 100.00 100.00 100.00 68.64 65.65 72.03
9 14.307 12.57 14.14 95 100.00 95 66.20 64.96 65.42
10 12.55 14.63 13.56 100.00 95 100.00 64.87 67.71 70.10
Mean 13.54 13.25 14.15 98 98.5 99 66.99 66.20 71.54

Online Analysis 272

Table 2 shows the online selection rate (in characters per min) , accuracy, and ITR for 273

each flashing pattern. Despite the RCP yielding the highest mean SR, there were no 274

significant differences in the mean SR for any of the flashing patterns (H = 0.98, p = 275

0.611) (Table 2). In contrast, the difference in the median accuracy across the flashing 276

patterns was found to be statistically significant (H = 7.399, p = .025). Pairwise 277

Mann-Whitney tests between each of the flashing patterns demonstrate that the CBP 278

pattern was significantly higher than the COMB flashing pattern (p = .0045). There 279

are no appreciable differences in accuracy between RCP and CBP across (p = .271) and 280

between RCP and COMB for (p = .112). Further, the mean ITR, which is a function of 281

both accuracy and SR, was not significantly different for any of the flashing patterns (H 282

= 1.46, p = 0.481), consistent with SR and the offline paradigm. Therefore, no 283

appreciable differences were detected in BCI performance among each of the flashing 284

patterns. 285

Table 2. The online selection rate (SR), accuracy (ACC), and information
transfer rate (ITR), for each flashing pattern.

SR (Characters/minute) ACC (%) ITR (bits/minute)
Subjects RCP CBP COMB RCP CBP COMB RCP CBP COMB
1 14.65 15.08 15.86 100.00 100.00 97.27 75.73 77.94 76.91
2 16.46 16.11 17.14 100.00 100.00 100.00 85.11 83.3 88.6
3 16.79 15.43 16.61 100.00 100.00 100.00 86.82 79.76 85.89
4 12.38 11.48 10.63 98.59 100.00 94.74 61.77 59.36 48.93
5 15.05 13.89 12.41 81.25 100.00 82.50 52.87 71.79 44.71
6 15.34 13.63 14.72 100.00 100.00 100.00 79.3 70.48 76.11
7 15.35 13.19 12.77 100.00 100.00 98.57 79.35 68.21 63.7
8 13.39 12.58 14.72 95.95 100.00 76.92 63.17 65.06 47.2
9 13.71 14.51 14.79 100.00 100.00 90.67 70.88 75.02 62.78
10 12.79 12.18 10.01 100.00 100.00 97.67 66.13 62.99 48.97
Mean 14.59 13.81 13.97 97.58 100.00 93.83 72.11 71.39 64.38
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Waveform Analysis 286

The P300 signal for each flashing pattern was evaluated at CPz, POz, PO7, and PO8 to 287

examine for meaningful differences in the amplitudes of the waveforms [14]. Stimulus 288

responses during online sessions were grouped based on whether the stimulus contained 289

the target character. The average attended and non-attended responses were calculated 290

for each subject and a global average was produced across subjects for each channel. 291

Significance was tested at each latency to determine whether attended and 292

non-attended responses differed significantly using Wilcoxon signed rank tests 293

correcting for multiple comparisons using false discovery rate. 294

For all three stimulus paradigms, there were significant differences between attended 295

and non-attended stimulus responses. Each of the four channels had a large positive 296

peak preceded by a smaller negative peak in the attended responses. In the 297

parieto-occipital channels, the negative peak occurred at a latency of approximately 200 298

ms and the positive peak at a latency of 300 ms. In the CPz channel, these peaks were 299

slightly later, occurring at approximately 300 ms and 400 ms latencies, respectively. In 300

the CPz, POz, and PO8 channels, the positive peak was significantly different from the 301

non-attended response. The peak in the PO7 channel was not statistically significant, 302

most likely because of a high variance across subjects. 303

The average signals were compared across the responses for the three stimulus 304

paradigms. While the positive peaks for the parieto-occipital channels were generally 305

larger for the checkerboard paradigm, no significant trend was seen between the three 306

groups. This result suggests that the stimulus paradigm does not significantly affect the 307

stimulus response produced. 308

Discussion 309

A robust, clinically viable BCI speller requires high accuracy (>90%), and speed (at 310

least 15-19 characters per minute) [15]. Although the functional utility of the P300 311

speller has been demonstrated in invasive conditions, specifically with signals acquired 312

with electrocorticography (ECoG), the long-term safety and utility has yet to be 313

determined. In order to ameliorate the risks of an invasive procedure, several studies 314

aim to optimize the utility of a P300 speller with a non-invasive, EEG-based paradigm. 315

Much work has been done to try and optimize the flashing pattern used, but has yielded 316

mixed results [5], [6]. 317

Our study aimed to provide a meaningful, standardized comparison of performance 318

for each flashing pattern, incorporating optimization methodologies that have been 319

shown to enhance performance. In our study, alternative flashing paradigms did not 320

significantly improve typing performance in a system with dynamic stopping and 321

language model priors. The mean online selection rate, mean online accuracy, and mean 322

online ITR were not significantly different for any of the three flashing patterns. This 323

observation contrasts with reports from both Townsend (2010) and Jin (2010) that the 324

traditional RCP flashing pattern failed to meet equivalent performance standards 325

compared to the CBP and COMB flashing patterns, respectively [5], [6]. 326

Townsend (2010) reported that the CBP flashing pattern yielded both a greater 327

online accuracy and practical bit rate [5]. In a 72 character grid, there are 24 flashes per 328

target selection in the CBP flash pattern compared 17 flashes per target selection the 329

RCP flash pattern. Because the number of flashes in the CBP is higher than in the 330

RCP, this would naturally lead to a greater time duration for each target selection, 331

leading to lower SR. Leveraging dynamic stopping, where the number of flashes per 332

target selection is modulated by the classification threshold, would dilute this disparity, 333

normalizing the selection rate for the CBP and RCP flashing patterns. While we find 334
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Fig 3. Target P300 waveforms. The average target response for each flashing
pattern at CPz, POz, PO7, and PO8 for subject 2 when using the row/column (blue),
checkerboard (green), and combinatorial (red) flashing paradigms.

that the CBP pattern has significantly higher accuracy, we hypothesize that the 335

excellent accuracy performance of the CBP pattern in the online paradigm is due to the 336

fact that CBP optimizes for accuracy while making significant concessions to speed. 337

Jin (2010) stated that mean offline practical bit rate was significantly different for 338

the 9-flash pattern compared to the 12-flash pattern (RCP), as a result of the diminished 339

number of flashes required for a character selection – a 33.33% decrease in the number 340

of flashes per selection [6]. Although there were fewer characters required for each 341

character selection, this did not necessarily translate to a higher online selection rate. 342

Our results suggest that dynamic stopping, where the number of flashes per target 343

selection changes as a function of a classification threshold needed to select a character, 344

reduces the performance effects of a nine-flash pattern with static number of flashes. 345

Dynamic stopping allows the system make decisions without needing to wait for a 346

required number of flashes, thereby reducing the impact of the flashing pattern on 347

performance. 348

Conclusion 349

This study shows that when used in conjunction with other established methods, 350

proposed flashing paradigms do not make a significant impact on P300 speller 351

performance. A large contributing factor to this phenomenon could be that dynamic 352

stopping allows the system to make decisions without needing to wait for a required 353
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number of flashes, reducing the impact of the flashing paradigm. This result likely 354

implies that current bottlenecks in P300 speller performance lie outside the type of 355

flashing paradigm used, and that optimization methods should be focused on 356

improvements to language models and predictive spelling. 357
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